Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation.
نویسندگان
چکیده
Proteins of the Drosophila behavior/human splicing (DBHS) family include mammalian SFPQ (PSF), NONO (p54nrb), PSPC1, and invertebrate NONA and Hrp65. DBHS proteins are predominately nuclear, and are involved in transcriptional and posttranscriptional gene regulatory functions as well as DNA repair. DBHS proteins influence a wide gamut of biological processes, including the regulation of circadian rhythm, carcinogenesis, and progression of cancer. Additionally, mammalian DBHS proteins associate with the architectural long noncoding RNA NEAT1 (Menε/β) to form paraspeckles, subnuclear bodies that alter gene expression via the nuclear retention of RNA. Here we describe the crystal structure of the heterodimer of the multidomain conserved region of the DBHS proteins, PSPC1 and NONO. These proteins form an extensively intertwined dimer, consistent with the observation that the different DBHS proteins are typically copurified from mammalian cells, and suggesting that they act as obligate heterodimers. The PSPC1/NONO heterodimer has a right-handed antiparallel coiled-coil that positions two of four RNA recognition motif domains in an unprecedented arrangement on either side of a 20-Å channel. This configuration is supported by a protein:protein interaction involving the NONA/paraspeckle domain, which is characteristic of the DBHS family. By examining various mutants and truncations in cell culture, we find that DBHS proteins require an additional antiparallel coiled-coil emanating from either end of the dimer for paraspeckle subnuclear body formation. These results suggest that paraspeckles may potentially form through self-association of DBHS dimers into higher-order structures.
منابع مشابه
Paraspeckles: nuclear bodies built on long noncoding RNA
Paraspeckles are ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. These structures play a role in regulating the expression of certain genes in differentiated cells by nuclear retention of RNA. The core paraspeckle proteins (PSF/SFPQ, P54NRB/NONO, and PSPC1 [paraspeckle protein 1]) are members of the DBHS (Drosophila melanogaster behavior, human splicing) fam...
متن کاملConstruct optimization for studying protein complexes: obtaining diffraction-quality crystals of the pseudosymmetric PSPC1-NONO heterodimer.
The methodology of protein crystallography provides a number of potential bottlenecks. Here, an approach to successful structure solution of a difficult heterodimeric complex of two human proteins, paraspeckle component 1 (PSPC1) and non-POU domain-containing octamer-binding protein (NONO), that are involved in gene regulation and the structural integrity of nuclear bodies termed paraspeckles i...
متن کاملNeat1 regulates oxidized low-density lipoprotein-induced inflammation and lipid uptake in macrophages via paraspeckle formation
Oxidized low-density lipoprotein (oxLDL) indu-ces macrophage inflammation and lipid uptake, and serves important roles in the development of atherosclerosis. The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (neat1) has two isoforms; the longer isoform, neat1_2, mediates the formation of subnuclear structures called paraspeckles. Reverse transcription‑quantitative polym...
متن کاملCompromised paraspeckle formation as a pathogenic factor in FUSopathies
Paraspeckles are nuclear bodies formed by a set of specialized proteins assembled on the long non-coding RNA NEAT1; they have a role in nuclear retention of hyperedited transcripts and are associated with response to cellular stress. Fused in sarcoma (FUS) protein, linked to a number of neurodegenerative disorders, is an essential paraspeckle component. We have shown that its recruitment to the...
متن کاملPrion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles
Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 13 شماره
صفحات -
تاریخ انتشار 2012